

Outline

- Loads discussion in 6006 standard
- Topology
- Complex wind inflow
- Aerodynamic, Aeroelastic & Dynamic Analysis
- Design Parameters & Design Load Cases
- Detailing Loads
- Uncertainties

ANSI/ AGMA/AWEA 6006-A03 "Standard for Design and Specification of Gearboxes for Wind Turbines"

- Documenting collective experience
- failures persist
- design parameters well specified
- method for developing design load is not
- intend to cover this in IEC 61400-4

Bed Plate Mounted Drivetrain

Nordex 60m, 1300 kW

Complex Inflow

Sources of WTG Loads

McNiff Light Industry

WTG Design Load Cases

	Design Situation	Wind Speeds	Other Conditions	Load Spectrum	Type of Analysis	
1	Normal	Vin - Vout		normal	U/F	N
2	Normal w/ Fault	Vin - Vout	Fault	normal	U/F	N/A
3	Start-up	Vin - Vout		Time series	U/F	N
4	Normal Stop	Vin - Vout		Time series	U/F	N
5	Emergency Stop	Vin - Vout	Overspeed or loss of line	Time series	U/F	N/A
6	Parked	To extreme	Fault or loss of line	extreme	U	N/A
7	Idling	To extreme	Fault or high wind	extreme	U	N
8	Transport & assembly			incident	U	T/A

IEC Design Wind Classes

Design Site	Class			
Characteristic	I	II	II	IV
Reference Wind Speed, (m/s)	50	42.5	37.5	30
Annual Avg Wind Speed,(m/s)	10	8.5	7.5	6
Turbulence Intensity at 15 m/s, average over 1 yr	0.18	0.18	0.18	0.18

Blade Element Momentum Theory

Aeroelastic Model of WTG

• INPUTS:

- Airfoil data (lift, drag coefficients)
- Blade geometry (chord, taper, twist, pitch, mass)
- Rotational speeds
- OUTPUTS (quasi-steady state):
 - Rotor forces and moments at steady state wind
 - power, shaft torque, thrust, shaft moments

LIMITS

– did I mention steady state ?

Structural Dynamics Model

- model of WTG operation & structure
- 5 DOF model of each blade
- 5 DOF yaw/ tower top model
- aerodynamic module w/stall & tip models
- Control system model
- Generator models
- Drive train model

Blade Forces & Moments

Hub Forces & Moments

Annotated Transient Event

Load Histogram - Revolutions

Load Histogram/ Damage Overlay

Load Partial Safety Factors

Load Case	Factor	Factor	Factor
Type	-Ultimate-	-Fatigue-	-Deflect-
Normal	1.35	1.0	1.35
Abnormal	1.1	1.1	1.1
Transport, erection	1.5	NA	1.5

Assumes validation by measurement

Uncertainties in Loads Analysis

- Unsteady aerodynamics
 - -Esp in atmospheric inflow models
- Predictability of control responses
 - Dynamic model inputs
 - Extreme events response at high power
- Codes may be within 50% for new design

